Хеморецепторы респираторной системы. Роль хеморецепторов в регуляции дыхания

Центральные хеморецепторы расположены на вентральной поверхности продолговатого мозга и чувствительны к уровню углекислого газа и водородных ионов спинномозговой жидкости. Обеспечивают возбуждение дыхательных нейронов, т.к. поддерживают постоянный афферентный поток и участвуют в регуляции частоты и глубины дыхания при изменении газового состава спинномозговой жидкости.

Периферические рецепторы локализованы в области бифуркации сонной артерии и дуги аорты в специальных гломусах (клубочках). Афферентные волокна идут в составе блуждающего и языкоглоточного нервов в дыхательный центр. Реагируют на снижение напряжения кислорода, повышение уровня углекислого газа и водородных ионов в плазме крови. Значение : обеспечивают рефлекторное усиление дыхания при изменении газового состава крови.

Вторичночувствующие рецепторы, сосудистые, неадаптирующиеся, всегда активны, увеличивается при изменениях.

Особенно сильным стимулом для хеморецепторов является сочетание гиперкапнии и гипоксемии. Это естественные сдвиги газового состава крови при физической нагрузке, которые приводят к рефлекторному увеличению легочной вентиляции.

Гиперкапния - повышение напряжения углекислого газа в плазме крови.

Гипоксемия - понижение напряжения кислорода в плазме крови.

При гипоксемии рост в ткани гломусов снижает проницаемость К-каналов мембраны рецепторов → деполяризация → открытие потенциалзависимых Са-каналов и диффузия ионов Сф внутрь клетки.

Са → экзоцитоз ДОФА. В области контакта мембраны рецептора с окончанием чувствительного нервного волокна → активность в волокнах синокаротидного нерва (нерв Геринга - часть языкоглоточного) → к ДЦ через нейроны ядер одиночного пути → рост вентиляции легких.

Роль рецепторов воздухоносных путей в регуляции дыхания.

Роль механорецепторов

1. Рецепторы растяжения легких локализованы в гладкомышечном слое воздухоносных путей (трахея, бронхи), связаны толстыми афферентными миелиновыми волокнами с нейронами дыхательного центра, проходят в составе блуждающего нерва. При вдохе легкие растягиваются и активируются рецепторы растяжения легких, импульсы идут в дыхательный центр, вдох тормозится, а выдох стимулируется. Если перерезать блуждающие нервы, дыхание становится более редким и глубоким. Значение : регулируют частоту и глубину дыхания, при спокойном дыхании не активны; низкопороговые.

2. Ирритантные рецепторы находятся в эпителиальном и субэпителиальном слоях воздухоносных путей и связаны с дыхательным центром тонкими миелиновыми волокнами. Являются высокопороговыми и быстроадаптирующимися . При спокойном дыхании не активны. Реагируют на большие изменения объема легких (спадение и перерастяжение), а также на раздражающие вещества воздуха (аммиак, дым) и пыль. Вызывают частое дыхание - одышку. Бимодальные рецепторы (механо. + хемо.)

3. Юкстакапиллярные рецепторы - находятся в интерстициальной ткани альвеол. Активируются при увеличении количества тканевой жидкости. Их активность усиливается при патологии (пневмония, отек легкого). Формируют частое и поверхностное дыхание.

4. Механорецепторы полости носоглотки, гортани, трахеи. При их возбуждении (пыль, слизь) возникает рефлекторная защитная реакция - кашель. Афферентные пути проходят в составе тройничного, языкоглоточного нервов.

5. Механорецепторы полости носа. При их раздражении возникает защитный рефлекс - чихание.

6. Обонятельные рецепторы полости носа. При раздражении возникает реакция «принюхивания» - короткие частые вдохи.

ФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ, ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ

Пищевая мотивация. Пищеварение в полости рта. Регуляция слюноотделения.

Пищеварение - комплекс процессов, обеспечивающих измельчение и расщепление питательных веществ на компоненты, лишенные видовой специфичности, способные всасываться в кровь или лимфу и участвовать в обмене веществ. Процесс пищеварения следует за потреблением пищи, а потребление пищи является следствием целенаправленного пищевого поведения, в основе которого лежит чувство голода. Голод и связанное с ним пищевое поведение рассматриваются как мотивация, направленная на устранение дискомфорта, связанного с недостатком питательных веществ в крови. Центральной структурой, запускающей пищевую мотивацию, является гипоталамус . В латеральной его части есть ядра, стимуляция которых вызывает чувство голода.

Функции ротовой полости

1. Захват и удерживание пищи (человек кладет пищу в рот или засасывает ее).

2. Анализ пищи с участием рецепторов ротовой полости.

3. Механическое измельчение пищи (жевание).

4. Смачивание пищи слюной и начальная химическая обработка.

5. Перевод пищевого комка в глотку (ротовая фаза акта глотания).

6. Защитная (барьерная) - защита от патогенной микрофлоры.

Слюнные железы

У человека имеется три пары крупных слюнных желез (околоушные, подчелюстные и подъязычные) и множество мелких желез в слизистой неба, губ, щек, кончика языка. В составе слюнных желез имеется два вида клеток: слизистые - вырабатывают вязкий секрет, богатый муцином, и серозные - вырабатывают жидкий секрет, богатый ферментами. Подъязычная железа и мелкие железы вырабатывают слюну непрерывно (связано с речевой функцией), а подчелюстная и околоушная железы - только при их возбуждении.

Состав и свойства слюны

В сутки образуется 0,5-2,0 литра слюны. Осмотическое давление слюны всегда меньше, чем осмотическое давление плазмы крови (слюна гипотонична плазме крови). РН слюны зависит от ее объема: при небольшом количестве выделяемой слюны она слабокислая, а при большом объеме - слабощелочная (рН = 5,2-8,0).

Вода смачивает пищевой комок и растворяет некоторые его компоненты. Смачивание необходимо для облегчения проглатывания пищевого комка, а его растворение - для взаимодействия компонентов пищи со вкусовыми рецепторами ротовой полости. Основной фермент слюны - альфа-амилаза - вызывает расщепление гликозидных связей крахмала и гликогена через промежуточные стадии декстринов до мальтозы и сахарозы. Слизь (муцин) представлена мукополисахаридами и гликопротеидами, делает пищевой комок скользким, что облегчает его проглатывание.

Механизмы образования слюны

Образование слюны протекает в два этапа:

1. Образование первичной слюны происходит в ацинусах. Вода, электролиты, низкомолекулярные органические вещества фильтруются в ацинусы. Высокомолекулярные органические вещества образуются клетками слюнных желез.

2. В слюнных протоках состав первичной слюны существенно изменяется за счет процессов секреции (ионов калия и др.) и реабсорбции (ионов натрия, хлора и др.). Из протоков в ротовую полость поступает вторичная (окончательная) слюна.

Регуляция образования слюны осуществляется рефлекторно.

Рецепторы ротовой полости

Осуществляют подготовку всего ЖКТ к поступлению пищи. Различают четыре типа рецепторов:

1. Вкусовые - являются вторичночувствующими рецепторами и делятся на четыре вида: вызывают ощущение сладкого, кислого, соленого и горького.

2. Механорецепторы - первичночувствующие, ощущение твердой или жидкой пищи, готовность пищевого комка к проглатыванию.

3. Терморецепторы - первичночувствующие, ощущение холодного, горячего.

4. Болевые - первичночувствующие, активируются при нарушении целостности ротовой полости.

Афферентные волокна от рецепторов поступают в ствол мозга в составе тройничного, лицевого, языкоглоточного и блуждающего нервов.

Эфферентные иннервация слюнных желез

ñ Парасимпатическая иннервация - в окончаниях нервов выделяется медиатор ацетилхолин, который взаимодействует с М-холинорецепторами и вызывает выделение большого количества жидкой слюны, богатой ферментами и бедной муцином.

ñ Симпатическая иннервация - в окончаниях нервов выделяется медиатор норадреналин, который взаимодействует с альфа-адренорецепторами и вызывает выделение небольшого количества густой и вязкой слюны, богатой муцином.

Регуляция слюноотделения

1. Условные рефлексы - протекают с участием коры больших полушарий и ядер гипоталамуса, возникают при раздражении дистантных рецепторов (зрительных, слуховых, обонятельных).

2. Безусловные рефлексы - возникают при раздражении рецепторов ротовой полости.

Акт глотания

Глотание - это процесс перехода пищи из ротовой полости в желудок. Акт глотания осуществляется по программе. Ф. Мажанди разделил акт глотания на три стадии:

ñ Ротовая стадия (произвольная) запускается с механорецепторов и хеморецепторов ротовой полости (пищевой комок готов к проглатыванию). Координированное движение мышц щек и языка продвигает пищевой комок на корень языка.

ñ Глоточная стадия (частично произвольная) запускается с механорецепторов корня языка. Язык перемещает пищевой комок в глотку. Происходит сокращение мышц глотки, при этом одновременно поднимается мягкое небо и закрывается вход в полость носа со стороны глотки. Надгортанник закрывает вход в гортань и открывается верхний пищеводный сфинктер.

ñ Пищеводная стадия (непроизвольная) запускается механорецепторами пищевода. Последовательно сокращаются мышцы пищевода при одновременном расслаблении нижележащих мышц. Явление называется перистальтическими волнами.

Центр глотания находится в продолговатом мозге и имеет связи со спинным мозгом. При глотании тормозится деятельность дыхательного и кардиоингибирующего центров (ЧСС повышается).

Регуляция дыхания осуществляется путем рефлекторных реакций, возникающих в результате возбуждения специфических рецепторов, заложенных в легочной ткани, сосудистых рефлексогенных зонах и других участках. Центральный аппарат регуляции дыхания представляют образования спинного мозга, продолговатого мозга и вышележащих отделов нервной системы. Основная функция управления дыханием осуществлянется дыхательными нейронами ствола головного мозга, которые передают ритмические сигналы в спинной мозг к мотонейронам дыхательных мышц.

Дыхательный нервный центр – это совокупность нейронов центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Основная (рабочая) часть дыхательного нервного центра расположена в продолговатом мозгу. В ней различают два отдела: инспираторный (центр вдоха) и экспираторный (центр выдоха). Дорсальная группа дыхательных нейронов продолговатого мозга состоит преимущественно из инспираторных нейронов. Они частично дают поток нисходящих путей, вступающих в контакт с мотонейронами диафрагмального нерва. Вентральная группа дыхательных нейронов посылает преимущественно нисходящие волокна к мотонейронам межреберных мышц. В передней части варолиева моста обнаружена область, названная пневмотаксическим центром. Этот центр имеет отношение к работе как экспи-, так и инспираторного его отделов. Важной частью дыхательного нервного центра является группа нейронов шейного отдела спинного мозхга (III-IV шейные сегменты), где расположены ядра диафрагмальных нервов.

К моменту рождения ребенка дыхательный центр способен давать ритмическую смену фаз дыхательного цикла, но эта реакция очень несовершенна. Дело заключается в том, что к рождению дыхательный центр еще не сформирован, его формирование заканчивается к 5-6 годам жизни. Это подтверждается тем, что именно к этому периоду жизни детей дыхание у них становится ритмичным и равномерным. У новорожденных же оно неустойчиво как по частоте, так и глубине и ритму. У них дыхание диафрагмальное и практически мало отличается во время сна и бодроствования (частота от 30 до 100 в минуту). У детей 1 года количество дыхательных движений днем в пределах 50-60, а ночью – 35-40 в минуту, неустойчивое и диафрагмальное. В возрасте 2-4 лет – частота становится в пределах 25-35 и носит преимущественно диафрагмальный тип. У 4-6 – летних детей частота дыхания 20-25, смешанное – грудное и диафрагмальное. К 7 –14 годам достигает уровня 19-20 в минуту, оно является в это время смешанным. Таким образом, окончательное формирование нервного центра практически относится к этому возрастному периоду.

Как же происходит возбуждение дыхательного центра? Один из важнейших путей его возбуждения - это автоматия. Единой точки зрения на природу автоматии нет, но имеются данные о том, что в нервных клетках дыхательного центра возможно возникновение вторичной деполяризации (по принципу диастолической деполяризации в сердечной мышце), которая, достигая критического уровня, и дает новый импульс. Однако одним из основных путей возбуждения дыхательного нервного центра является его раздражение углекислотой. На прошлой лекции мы отметили, что углекислоты много остается в крови, оттекающей от легких. Она и выполняет функцию основого раздражителя нервных клеток продолговатого мозга. Это опосредуется через специальные образования - хеморецепторы , расположенные непосредственно в структурах продолговатого мозга («центральные хеморецепторы»). Они очень чувствительны к напряжению углекислого газа и кислотно-щелочному состоянию омывающей их межклеточной мозговой жидкости.

Углекислота может легко диффундировать из кровеносных сосудов головного мозга в спинномозговую жидкость и стимулировать хеморецепторы продолговатого мозга. Это еще один путь возбуждения дыхательного центра.

Наконец, его возбуждение может осуществляться и рефлекторно. Все рефлексы, обеспечивающие регуляцию дыхания мы условно подразделяем на: собственные и сопряженные.

Собственные рефлексы дыхательной системы – это такие рефлексы, которые берут начало в органах дыхательной системы и в ней же заканчиваются. В первую очередь к этой группе рефлексов следует отнести рефлекторный акт с механорецепторов легких . В зависимости от, локализации и вида, воспринимаемых раздражений, характера рефлекторных ответов на раздражение различают три вида таких рецепторов: рецепторы рпастяжения, ирритантные рецепторы и юкстакапиллярные рецепторы легких.

Рецепторы растяжения легких находятся, преимущественно в гладких мышцах воздухоносных путей (трахее, бронхах). Таких рецепторов в каждом легком около 1000 и связаны они с дыхательным центром крупными миелинизированными афферентными волокнами блуждающего нерва с высокой скоростью проведения. Непосредственным раздражителем этого типа механорецепторов является внутреннее напряжение в тканях стенок воздухоносных путей. При растяжении легких во время вдоха частота этих импульсов возрастает. Раздувание легких вызывает рефлекторное торможение вдоха и переход к выдоху. При перерезке блуждающих нервов эти реакции прекращаются, и дыхание становится замедленным и глубоким. Указанные реакции называют рефлексом Геринга-Брейера. Этот рефлекс воспроизводится у взрослого человека, когда дыхательный объем превосходит 1 л (при физической нагрузке, например). Он имеет большое значение у новорожденных.

Ирритантные рецепторы или быстро адаптирующиеся механорецепторы воздухоносных путей, рецепторы слизистой оболочки трахеи и бронхов. Они реагируют на резкие изменения объема легких, а также при действии на слизистую трахеи и бронхов механических или химических раздражителей (пылевых частиц, слизи, паров едких веществ, табачного дыма и т.п.). В отличие от легочных рецепторов растяжения ирритантные рецепторы обладают быстрой адаптацией. При попадании в дыхательные пути мельчайших инородных тел (пыли, частиц дыма), активация ирритантных рецепторов вызывает у человека кашлевой рефлекс. Его рефлекторная дуга такова – от рецепторов информация через верхнегортанный, языкоглоточный, тройничный нерв идет к соотвествующим структурам мозга, отвечающим за выдох (срочный выдох – кашель ). Если изолированно возбуждаются рецепторы носовых дыхательных путей, то это вызывает другой срочный выдох - чихание.

Юкстакапиллярные рецепторы – расположены вблизи капилляров альвеол и дыхательных бронхов. Раздражителем этих рецепторов является повышение давления в малом круге кровообращения, а также увеличение объема интерстициальной жидкости в легких. Это наблюдается при застое крови в малом круге кровообращения, отеке легких, повреждениях легочной ткани (например, при пневмонии). Импульсы от этих рецепторов направляются к дыхательному центру по блуждающему нерву, вызывая появление частого поверхностного дыхания. При заболеваниях вызывает ощущение одышки, затрудненного дыхания. Может быть не только учащенное дыхание (тахипное), но и рефлекторное сужение бронхов.

Еще различают большую группу собственных рефлексов, которые берут свое начало от проприорецепторов дыхательной мускулатуры. Рефлекс от проприорецепторов межреберных мышц осуществляется во время вдоха, когда эти мышцы, сокращаясь, посылают информацию через межреберные нервы к экспираторному отделу дыхательного центра и в результате наступает выдох. Рефлекс от проприорецепторов диафрагмы осуществляется в ответ на ее сокращение во время
вдоха, в результате информация поступает по диафрагмальным нервам вначале в спинной, а потом в продолговатый мозг в экспираторный отдел дыхательного центра и наступает выдох.

Таким образом, все собственные рефлексы дыхательной системы осуществляются во время вдоха и заканчиваются выдохом.

Сопряженные рефлексы дыхательной системы – это рефлексы, которые начинаются за ее пределами. К этой группе рефлексов, прежде всего, относится рефлекс на сопряжение деятельности системы кровообращения и дыхания. Такой рефлекторный акт начинается от периферических хеморецепторов сосудистых рефлексогенных зон. Наиболее чувствительные из них находятся в области синокаротидной зоны. Синокаротидный хеморецептивный сопряженный рефлекс – осуществляется при накоплении углекислого газа в крови. Если его напряжение растет, то происходит возбуждение наиболее высоковозбудимых хеморецепторов (а они именно в этой зоне и находятся в синокаротидном тельце), возникающая волна возбуждения идет от них по IX паре черпномозговых нервов и достигает экспираторного отдела дыхательного центра. Возникает выдох, который и усиливает выброс лишней углекислоты в окружающее пространство. Таким образом, система кровообращения (она, кстати, при осуществлении этого рефлекторного акта также работает более интенсивно, возрастает частота сердечных сокращений, скорость кровотока) влияет на деятельность системы дыхания.

Другой разновидностью сопряженных рефлексов дыхательной системы является многочисленная группа экстероцептивных рефлексов. Они берут свое начало от тактильных (вспомните реакцию дыхания на осязание, прикосновение), температурных (тепло – увеличивает, холод – уменьшает дыхательную функцию), болевых (слабые и средней силы раздражители – усиливают, сильные – угнетают дыхание) рецепторов.

Проприорецептивные сопряженные рефлексы дыхательной системы осуществляются вследствие раздражения рецепторов скелетных мышц, суставов, связок. Это наблюдается при выполнении физической нагрузки. Почему это происходит? Если в состоянии покоя человеку необходимо 200-300 мл кислорода в минуту, то при физической нагрузке этот объем должен значительно возрости. В этих условиях увеличивается и МО, артериовенозная разница по кислороду. Увеличение этих показателей сопровождается повышением потребления кислорода. Далее все зависит от объема работы. Если работа длится 2-3 минуты и мощность ее достаточно велика, то потребление кислорода непрерывно растет с самого начала работы и снижается лишь после ее прекращения. Если же продолжительность работы больше, то потребление кислорода, нарастая в первые минуты, поддерживается в дальнейшем на постоянном уровне. Потребление кислорода возрастает тем более, чем тяжелее физическая работа. Наибольшее количество кислорода, которое организм может поглотить за 1 минуту при предельно тяжелой для него работе, называется максимальное потребление кислорода (МПК). Работа, при которой человек достигает своего уровня МПК, должна длиться не более 3 минут. Существует много способов определения МПК. У не занимающихся спортом или физическими упражнениями людей величина МПК не превышает 2,0-2,5 л/мин. У спортсменов она может быть выше более чем в два раза. МПК является показателем аэробной производительности организма. Эта способность человека совершать очень тяжелую физическую работу, обеспечивая свои энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Известно, что даже хорошо тренированный человек может работать при потреблении кислорода на уровне 90-95% от уровня своего МПК не более 10-15 минут. Тот, кто имеет большую аэробную производительность, тот достигает лучших результатов в работе (спорте) при относительно одинаковой технической и тактической подготовленности.

Почему при физической работе возникает увеличение потребления кислорода? В этой реакции можно выделить несколько причин: раскрытие дополнительных капилляров и увеличение крови в них, сдвиг кривой диссоциации гемоглобина вправо и вниз, увеличение температуры в мышцах. Для того, чтобы мышцы могли совершать определенную работу, им нужна энергия, запасы которой в них восстанавливаются при доставке кислорода. Таким образом, существует зависимость между мощностью работы и количеством кислорода, которое требуется для работы. То количество крови, которое требуется для работы, называется кислородным запросом. Кислородный запрос может достигать при тяжелой работе до 15-20 л в минуту и более. Однако максимум потребления кислорода в два-три раза меньше. Можно ли выполнить работу, если минутный кислородный запас превышает МПК? Чтобы правильно ответить на этот вопрос, надо вспомнить, для чего используется кислород при мышечной работе. Он необходим для восстановления богатых энергией химических веществ, обеспечивающих мышечное сокращение. Кислород обычно взаимодействует с глюкозой, и она, окисляясь, освобождает энергию. Но глюкоза может расщепляться и без кислорода, т.е. анаэробным путем, при этом тоже выделяется энергия. Кроме глюкозы, есть и другие вещества, способные расщепляться без кислорода. Следовательно, работа мышц может быть обеспечена и при недостаточном поступлении кислорода в организм. Однако в этом солучае образуется много кислых продуктов и для их ликвидации нужен кислород, ибо они разрушаются путем окисления. То количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называетсякислородный долг. Он возникает во время работы и ликвидируется в восстановительном периоде после нее. На его ликвидацию уходит от нескольких минут до полутора часов. Все зависит от длительности и интенсивности работы. Основную роль в образовании кислородного долга составляет молочная кислота. Чтобы продолжить работу при наличии в крови большого ее количества, организм должен иметь мощные буферные системы и его ткани должны быть приспособлены к работе при недостатке кислорода. Такое приспособление тканей служит одним из факторов, обеспечивающих высокую анаэробную производительность.

Все это усложняет регуляцию дыхания при физической работе, так как потребление кислорода в организме возрастает и его недостаток в крови приводит к раздражению хеморецепторов. Сигналы от них идут в дыхательный центр, в результате дыхание учащается. При мышечной работе много образуется углекислоты, которая поступает в кровь и она может действовать на дыхательный центр непосредственно черех центральные хеморецепторы. Если недостаток кислорода в крови приводит преимущественно к учащению дыхания, то избыток углекислоты вызывает его углубление. При физической работе оба эти фактора действуют олновременно, вследствие чего происходит и учащение, и углубление дыхания. Наконец, импульсы идущие от работающих мышц, достигают дыхательного центра и усиливают его работу.

При функционировании дыхательного центра все отделы его функционально взаимосвязаны. Это достигается следующим механизмом. При накоплении углекислоты возбуждается инспираторный отдел дыхательного центра, от него информация идет в пневматоксический отдел центра, потом к экспираторному его отделу. Последний, кроме того, возбуждается за счет целой гаммы рефлекторных актов (с рецепторов легких, диафрагмы, межреберных мышц, дыхательных путей, хеморецепторов сосудов). Вследствие его возбуждения через специальный тормозный ретикулярный нейрон угнетается деятельность центра вдоха и на смену ему приходит выдох. Так как центр вдоха тормозится, то он не посылает далее импульсы в пневматоксический отдел, а от него прекращается поток информации в центр выдоха. К этому моменту накапливается в крови углекислота и снимаются тормозные влияния со стороны экспираторного отдела дыхательного центра. Вследствие такого перераспределения потока информации возбуждается центр вдоха и наступает на смену выдоху вдох. И все вновь повторяется.

Важным элементом в регуляции дыхания является блуждающий нерв. Именно через его волокна идут основные влияния на центр выдоха. Поэтому в случае его повреждения (также как и при повреждении пневматоксического отдела дыхательного центра) дыхание изменяется так, что вдох остается нормальным, а выдох резко затягивается. Такой тип дыхания называют вагус-диспноэ .

Мы уже отмечали выше, что при подъме на высоту происходит увеличение легочной вентиляции, обусловленное стимуляцией хеморецепторов сосудистых зон. Одновременно с этим возрастает частота сердечных сокращений и МО. Эти реакции несколько улучшают кислородный транспорт в организме, но не надолго. Поэтому при длительном пребывании в горах по мере адаптации к хронической гипоксии начальные (срочные) реакции дыхания постепенно уступают место более экономному приспособлению газотранспортной системы организма. Так, у постоянных жителей больших высот реакция дыхания на гипоксию оказывается резко ослабленной (гипоксическая глухота ) и легочная вентиляция поддерживается почти на том же уровне, что и у живущих на равнине. Зато при длительном проживании в условиях высокогорья возрастает ЖЕЛ, повышается КЕК, в мышцах становится больше миоглобина, в митохондриях усиливается активность ферментов, обеспечивающих биологическое окисление и гликолиз. У людей, живущих в горах, кроме того, понижена чувствительность тканей организма, в частности, центральной нервной системы, к недостаточному снабжению кислородом.

На высотах боле 12000 м давление воздуха очень мало и в этих условиях даже дыхание чистым кислородом не решает проблемы. Поэтому при полетах на этой высоте необходимы герметические кабины (самолеты, космические корабли).

Человеку иногда приходиться работать и в условиях повышенного давления (водолазные работы). На глубине в крови начинает растворяться азот и при быстром подъеме из глубины он не успевает выделяться из крови, газовые пузырьки вызывают эмболию сосудов. Состояние, возникающее при этом, называется кесонная болезнь. Она сопровождается болями в суставах, головокружением, одышкой, потерей сознания. Поэтому азот в смесях воздуха заменяют нерастворимыми газами (например, гелием).

Человек может произвольно задерживать дыхание не более чем на 1-2 минуты. После предварительной гипервентиляции легких эта задержка дыхания увеличивается до 3-4 минут. Однако затяжное, например, ныряние после гипервентиляции таит в себе серъезную опасность. Быстрое падение оксигенации крови может вызвать внезапную потерю сознания, а в этом состоянии пловец (даже опытный) под влиянием стимула, вызванного ростом парциального напряжения углекислоты в крови, может вдохнуть воду и захлебнуться (утонуть).

Итак, в заключение лекции я должен Вам напомнить, что здоровое дыхание это – через нос, как можно реже, с задерджкой во время вдоха и, особенно, после него. Удлиняя вдох, мы стимулируем работу симпатического отдела вегетативной нервной системы, со всеми вытекающими отсюда последствиями. Удлиняя выдох, мы удерживаем больше и дольше в крови углекислоту. А это оказыавает положительное влияние на тонус кровеносных сосудов (снижает его), со всеми вытекающими отсюда последствиями. Благодаря этому кислород может в такой ситуации пройти в самые отдаленные сосуды микроциркуляции, препятствуя нарушению их функции и развитию многочисленных заболеваний. Правильное дыхание – это профилактика и лечение большой группы заболеваний не только дыхательной системы, но и других органов и тканей! Дышите на здоровье!

Периферические или артериальные хеморецепторы расположены в известной рефлексогенной зоне – дуге аорты и каротидном синусе (рисунки 17А и Б), и представлены каротидными и аортальными телами. Здесь же локализованы и барорецепторы, принимающие участие в регуляции артериального давления.

Рисунок 17 А. Периферические хеморецепторы

В сосудистой рефлексогенной зоне

Из двух хеморецептивных зон артериального русла - аортальной и синокаротидной - в регуляции дыхания существенную роль играет синокаротидная зона. Эта роль значительно скромнее по сравнению с ролью бульбарных структур - у человека двустороннее удаление каротидных тел не вызывает заметных изменений дыхания в состоянии покоя. Каротидные тела расположены в месте деления общей сонной артерии на внутреннюю и наружную.

Тело представляет собой образование, заключенное в соединительнотканную капсулу, чрезвычайно богато кровоснабжается и иннервируется как афферентными, так и эфферентными нервами. Кровоток через каротидное тело очень велик - до 2л/мин/г, а потребление кислорода в 3 - 4 раза больше, чем мозгом.

Рисунок 17 Синокаротидная (а) и аортальная (б) рефлексогенные зоны

IX и X – языкоглоточный и блуждающий нервы, 1 – верхний шейный симпатический ганглий, 2 – синусный нерв, 3 – каротидное тело, 4 – общая сонная артерия, 5 - затылочная артерия, 6 – звездчатый ганглий, 7 – аортальный нерв, 8 – аортальные тела, 9 – дуга аорты

Схема строения и иннервации каротидного тела представлена на рисунке 18.

Рисунок 18. Схема строения каротидного тела

    Клетки I типа

    Клетки II типа

    Синусный нерв

    Афферентные волокна синусного нерва

    Эфферентное волокно синусного нерва

    Симпатическое волокно

    Кровеносный сосуд

В ткани каротидного тела различают два типа клеток. I тип - главные клетки, крупные клетки, имеющие эпителиальное происхождение. В клетках этого типа содержатся гранулы, которые исчезают при острой гипоксии. Непосредственно с ними контактируют окончания афферентной ветви языкоглоточного нерва (нерв Геринга, синусный нерв). Именно этим клеткам принадлежит основная роль в хемочувствительности - разрушение этих клеток прекращает хеморецептивную активность каротидного тела. Мелкие клетки II типа гомологичны глиальным клеткам и напоминают Шванновские. Своими отростками они оплетают главные клетки.

Адекватными стимуляторами хеморецепторов каротидного тела служат следующие сдвиги в составе омывающей их артериальной крови: 1) снижение напряжения кислорода, 2) увеличение напряжения СО 2 , 3) увеличение концентрации водородных ионов.

Главным стимулятором активности каротидного центра является гипоксия . Даже умеренная гипоксия сопровождается более выраженным увеличением частоты импульсов синусного нерва, чем сильная гиперкапния.

Каким же образом рецепторы воспринимают информацию о снижении напряжения кислорода в крови? Цитоплазма клеток I типа содержит гранулы, в которых накапливается дофамин. Оценка уровня кислорода осуществляется специальными рецепторами, которые расположены на мембране клеток I типа. На основании экспериментальных данных предложена гипотетическая схема работы этих рецепторов, представленная на рисунке 19.

Рисунок 19. Кислородный сенсор каротидного тела

Взаимодействие кислородного сенсора с кислородом приводит к активации калиевых каналов. В таком состоянии клетка находится практически постоянно, а ток калия из цитоплазмы поддерживает потенциал клетки на уровне мембранного потенциала покоя. Снижение напряжения кислорода в крови приводит к освобождению кислородного сенсора, калиевые каналы закрываются, мембранный потенциал уменьшается и достигает критического уровня деполяризации, в клетках I типа возникает потенциал действия. Возникновение ПД приводит к тому, что в клетках открываются кальциевые каналы и выделяется дофамин.

Артериальные хеморецепторы возбуждаются и при повышении напряжения углекислого газа в артериальной крови. Гиперкапническая стимуляция артериальных хеморецепторов, так же как и центральных, осуществляется прямым влиянием ионов Н + при снижении рН крови. Воздействие водородных ионов в клетках каротидного тела обусловлено сдвигом метаболизма за счет работы редокс-систем. Таким образом, и гипоксия, и гиперкапния различными путями приводят к изменению метаболических процессов в клетках, а стимуляторами каротидных хеморецепторов служат продукты измененного обмена. Существенная и важная разница заключается в том, что реакция на снижение напряжения кислорода наступает значительно быстрее.

Возникающий импульс возбуждения проводится по аффрентным волокнам синусного нерва и достигает дорзальной группы дыхательных нейронов продолговатого мозга. Возбуждение нейронов повышает инспираторную активность. Особенно увеличивается частота импульсации в диапазоне напряжения кислорода от 80 до 20 мм рт.ст.

Хеморецепторы каротидного синуса находятся под нервным контролем: повышение активности симпатической нервной системы и выделение норадреналина повышает их чувствительность, а парасимпатические импульсы и ацетилхолин – снижают.

Аортальные тела сходны по строению с каротидными телами, не отличаются и важнейшие функции этих образований, прежде всего как кислородных сенсоров. Расположенные в аортальной зоне хеморецепторы принимают незначительное участие в регуляции дыхания, их основная роль проявляется в регуляции деятельности сердца и тонуса сосудов.

Периферические хеморецепторы дополняют деятельность центральных. Взаимодействие центральных и периферических структур особенно важно в условиях дефицита кислорода. Дело в том, что центральные хеморецепторы очень чувствительны к недостатку кислорода. Клетки при гипоксии могут совсем потерять свою чувствительность, при этом снижается активность дыхательных нейронов. В этих условиях дыхательный центр получает основную возбуждающую стимуляцию от периферических хеморецепторов, для которых основным стимулом является именно дефицит кислорода. Т аким образом, артериальные хеморецепторы служат «аварийным» механизмом стимуляции дыхательного центра в условиях снижения снабжения мозга кислородом.

Непременным условием эффективности легочного газообмена служит поддержание оптимальных вентиляционно-перфузионных отношений. Такое оптимальное соотношение обеспечивается сопряженной регуляцией систем дыхания и кровообращения. Проявлением такого сопряжения служит одновременное увеличение и вентиляции легких (МОД), и сосудистого тонуса, и деятельности сердца (МОК). Особенно выраженными такие одновременные изменения бывают во время физической нагрузки, при гипоксии, эмоциональном возбуждении. Периферические хеморецепторы расположены в тех же зонах, что и барорецепторы - нервные окончания лежащие непосредственно в стенке магистрального сосуда. Такое соседство, конечно, не случайно. Совместный контроль дыхания и кровообращения обеспечивает устойчивое снабжение кислородом жизненно важных органов, прежде всего мозга. Аортальная зона расположена у «ворот» всей артериальной системы, и здесь ведущую роль играют барорецепторы. Синокаротидная зона лежит у «ворот» всей сосудистой сети мозга, и здесь основная роль принадлежит хеморецепторам. Проекции хеморецепторных и барорецепторных афферентных волокон в ядрах ствола мозга (солитарное, парамедиальное) объединены межнейронными связями.

Итак, центральные и периферические хеморецепторы передают в дыхательный центр информацию о напряжении кислорода и углекислого газа в крови, они возбуждаются и увеличивают частоту импульсов при снижении содержания кислорода и повышении углекислого газа.

Рефлекторная регуляция дыхания модулирует работу дыхательного центра, приспосабливает глубину и частоту дыхательных движений и соответственно степень вентиляции легких с потребностями организма, обеспечивает защитные реакции дыхательных путей от химических и механических факторов повреждения. Дыхательные рефлексы развиваются вследствие раздражения не только собственных рецепторов, но и рецепторов других органов и тканей организма. Однако наибольшее значение в регуляции дыхания имеют хемочутливи структуры рефлексогенных зон сосудов и продолговатого мозга, каротидные и аортальные барорецепторы и механорецепторы легких.

Роль рецепторов в регуляции дыхания

1 Центральные хеморецепторы продолговатого мозга. В дыхательном центре продолговатого мозга, кроме дорсальных и вентральных групп дыхательных нейронов, не чувствительны к изменениям концентрации ионов водорода и углекислого газа, билатерально под вентральной поверхностью (на глубине 0,2 мм) находится хемочутливе поле, которое реагирует на изменения концентрации Н + и СО2 (рис. 11.17).

Повышенная концентрация СО2 в артериальной крови через гематоэнцефалический барьер диффундирует в цереброспинальной жидкости и в интерстициальное пространство, где под влиянием карбоангидразы образуется угольная кислота (СО2 + Н2О = Н2СO3), которая распадается на Н + + HCO3-.

Ионы Н + проникают вхемочутливе поле и непосредственно действуют на центральные хеморецепторы, информация от которых передается в дорсальных инспираторных нейронов, которые активируются и вызывают значительное увеличение вентиляции легких. В меньшей степени влияет СО2. Центральные рецепторы к изменениям концентрации O2 почти не чувствительны.

2 Периферические хеморецепторы расположены в ка ротидних (место бифуркации сонных артерий) и аортальных (вдоль дуги аорты) тельцах (рис. 11.18).

Кровоснабжение телец осуществляется маленькими артериями, отходящими от соседних артериальных ветвей. Масса артериальной крови, протекающей в них за 1 мин, в 20 раз больше массы самых телец, поэтому они реагируют на изменение Ро2, а не Рсо2, которая здесь почти постоянно. Афферентная информация от каротидных телец нервом Геринга (ветвь языко-глоточного нерва) и от телец дуги аорты по депрессорных нерва Циона (ветвь блуждающего нерва) направляется в дорсальную инспираторную зону продолговатого мозга.

РИС. 11.17. Роль центральных хеморецепторов в регуляции дыхания. И - инспираторные нейроны дорсальной зоны: СМР - спинномозговая жидкость

РИС. 11.18.

При уменьшении Ро 2 в артериальной крови в пределах 60-30 мм рт. ст. периферические хеморецепторы телец возбуждаются, информация от них передается в инспираторные нейроны, что приводит к увеличению глубины и частоты дыхания, восстановление кислородного гомеостаза.

При увеличении РСО 2 в артериальной крови также активируются периферические хеморецепторы и инспираторные нейроны, получающие от них информацию, вызывают увеличение вентиляции легких, восстановления Ро2 крови, но их роль значительно меньше (15%), чем центральных хеморецепторов (85%), которые активируются позже. При уменьшении pH артериальной крови стимулируются преимущественно каротидные хеморецепторы независимо от изменения Рсо2.

Механизм активации периферических хеморецепторов. Это вторичные хеморецепторы - гломусные клетки, входящие в состав сонных и аортального телец. В ответ на изменения концентрации Ро2, Рсо2 и pH крови они уменьшают проницаемость мембранных ионных каналов для калия, что приводит к деполяризации мембраны, увеличение ее проницаемости для ионов кальция. Следствием этого является выделение медиаторов, которые взаимодействуют с постсинаптической мембраны афферентных нервных волокон и вызывают постсинаптический потенциал с последующей генерацией ПД, передают информацию по IX и X черепных нервах к дорсальных инспираторных нейронов.

3 Рецепторы растяжения легких - расположены в гладких мышцах бронхов и бронхиол. Они активируются при перерастяжения легких воздухом при вдохе, когда дыхательный объем превышает 1,0 л, например, при интенсивной физической работе. Информация от рецепторов передается афферентными во-

РИС. 11.19. Рефлекс Геринга - Брейсра. Торможение ДДГ (дорсальная дыхательная группа) и стимуляция "+" ВДГ (вентральная дыхательная группа). ПТЦ - пневмотаксичний центр, Хп - блуждающий нерв

Локня блуждающего нерва в инспираторных нейронов дорсальной дыхательной группы, что приводит к прекращению вдоха и ускорения выдохе, увеличение частоты дыхательных движений (рефлекс Геринга - Брейера). Рефлекс имеет защитный характер, поскольку предупреждает чрезмерное растяжение легких (рис. 11.19).

4 Иритантни рецепторы - расположены в слизистой оболочке воздухоносных путей между эпителиальными клетками. Они стимулируются как механическими (вдыхание частиц пыли, дыма, накопления слизи), так и химическими раздражителями (пары серной кислоты, аммиака, серы) и быстро адаптируются. Раздражение иритантних рецепторов бронхов сокращает выдох, в результате чего дыхание становится частым и поверхностным. Возбуждение иритантних рецепторов трахеи приводит к чихания, кашля и бронхоспазма.

5 J-рецепторы (юкстакапилярни) - расположены в стенках альвеол, которые тесно прилегают к капиллярам. Активируются при отеке интерстициального пространства между стенкой альвеолы и капилляра. Сильным раздражителем этих рецепторов является повышение давления в малом круге кровообращения при сердечной недостаточности (отек легких). Возбуждение их приводит к рефлекторного сужения бронхов и гортани, апноэ, после чего возникает частое поверхностное дыхание.

6 Рецепторы суставов и мышц (проприорецепторы) - активируются при движении конечностей; важные для стимуляции дыхания при физической нагрузке.

7 Рецепторы кожи и висцеральные рецепторы - передают информацию в дыхательный центр. Во время боли, изменения температуры кожи, другой активации может возникать гипервентиляция.

Понравилась статья? Поделитесь с друзьями!